21.1.1.2. Алкилирование по атому азота
1,3-Азолы легко кватернизуются по иминному атому азота при действии алкил-галогенидов; скорости этих реакций соотносятся следующим образом: 1-метил-имидазол : тиазол : оксазол — 900 : 15 :1 [5]. Микроволновое облучение значительно ускоряет процесс [6]. Имидазолы, содержащие незамещённую группу NH, образуют в этом случае сначала протонированный N-алкилимидазол, который затем может депротонироваться непрореагировавшим имидазолом и вторично вступать в реакцию; это означает, что при взаимодействии с алкилгалогенидами образуется смесь солей имидазолия, 1-алкилимидазолия и 1,3-диалкил-имидазолия.
Использование ограниченного количества алкилирующего агента или проведение реакции в щелочном растворе [7], где алкилированию подвергается имидазолил-анион (разд. 21.4.1.), может свести к минимуму все эти сложности. Гладкое образование дважды алкилированных производных возможно при реакции 1-триметилсилилимвдазола с алкилгалогенидом [8]. N-Арилирование имидазолов, особенно эффективное при использовании катализа Cu(I), проявляет некоторую региоселективность в отношении 4(5)-замещённых имидазолов: как правило, в качестве основного продукта реакции образуются 1-арил-4-замещённые имидазолы [9].
N-Алкилирование оксазолов [10] или имвдазолов, содержащих фенилсуль-фонильную или ацильную [11] группу на атоме азота, сильно затруднено, и для проведения гладкой реакции требуется метилтрифлат или соль Меервейна. Последующий простой алкоголиз сульфониламида имидазолия даёт N-замещённый имидазол [12]; кроме того, процесс может быть использован для превращения спиртов в карбаматы [13]. Поскольку ацилирование 4(5)-замещённых имидазолов даёт стерически менее затруднённые 1-ацил-4-замещённые имидазолы, последующее алкилирование, а затем гидролитическое удаление ацильной группы позволяет получать 1,5-дизамещенные имидазолы [14].
1,4-Дизамещённые соединения образуются при алкилировании защищённых по положению 1 5-замещенных имидазолов (см. разд. 21.6.1.). Алкилирование идёт по атому азота N(3) с последующим удалением N-защиты [15]. N-Тритил-имидазолы можно проалкилировать по атому азота простыми галогенидами, а затем удалить трифенилметильную группу в кислой среде [16]. Алкилирование акрилонитрилом по реакции Михаэля обратимо, что даёт возможность получать 1,5-дизамещённые имидазолы путём N-алкилирования 1-(2-цианоэтил)-4-замещенных имидазолов с последующим элиминированием акрилонитрила [17].
Другой способ контроля за направлением N-алкилирования применим для гистидина и гистамина: на первой стадии образуется циклическая мочевина в результате реакции с карбонилдиимидазолом (разд. 21.1.1.3.), ускоряющая алкилирование по другому атому азота, а дальнейшее раскрытие цикла приводит к образованию N(1)-алкилированного производного с уретановой защитной группой [18].
В «обычных» условиях реакции Манниха имидазол превращается в N-диметиламинометилимидазол, предположительно в результате атаки по иминному атому азота с последующим депротонированием другого атома азота [19].
Глава 21
- 21. 1,3-азолы — имидазолы, тиазолы и оксазолы: реакции и методы синтеза
- 21.1. Реакции с электрофильными реагентами
- 21.1.1. Присоединение по атому азота
- 21.1.1.1.1. Протонирование
- 21.1.1.2. Алкилирование по атому азота
- 21.1.1.3. Ацилирование по атому азота
- 21.1.2. Замещение по атому углерода
- 21.1.2.1. Протонирование
- 21.1.2.2. Нитрование
- 21.1.2.3. Сульфирование
- 21.1.2.4. Галогенирование
- 21.1.2.5. Ацилирование
- 21.1.2.6. Реакции с альдегидами
- 21.1.2.7. Реакции с иминиевыми солями
- 21.2. Реакции с окислителями
- 21.3. Реакции с нуклеофильными реагентами
- 21.3.1. Реакции с раскрытием цикла
- 21.3.2. Реакции замещения атома галогена
- 21.4. Реакции с основаниями
- 21.4.1. Депротонирование группы NH
- 21.4.2. Депротонирование СН
- 21.5. Реакции N-металлированных имидазолов
- 21.6. Реакции C-металлированных 1,3-азолов
- 21.6.1. Литийорганические производные
- 21.6.2. Реакции, катализируемые палладием
- 21.7. Реакции со свободными радикалами
- 21.8. Реакции с восстановителями
- 21.9. Электроциклические реакции
- 21.10. Алкил-1,3-азолы
- 21.11. Четвертичные соли 1,3-азолов
- 21.12. Гидрокси- и амино-1,3-азолы
- 21.13. N-оксиды 1,3-азолов
- 21.14. Синтезы 1,3-азолов
- 21.14.1. Синтез кольца
- 21.14.1.1. Из α-галогенокарбонильных соединений (или их эквивалентов) и трёхатомного фрагмента, поставляющего два гетероатома и атом C(2) кольца
- 21.14.1.2. Циклодегидратацией α-ациламинокарбонильных соединений
- 21.14.1.3. Из изонитрилов
- 21.14.1.4. Оксазолы из α-диазокарбонильных соединений
- 21.14.1.5. Дегидрированием
- 21.14.2. Примеры некоторых важных синтезов с участием 1,3-азолов
- 21.14.2.1. 4(5)-Фторгистамин
- 21.14.2.2. Пиридоксин
- 21.14.2.3. Тиамин
- 21.14.2.4. Тиено[2,3-d]имидазол
- 21.14.2.5. Гроссуларин-2
Дополнительно:

Москва, 1948 год. Государственное издательство иностранной литературы. ...

В сборнике описаны синтез, свойства и области применения основных химически ...

В книге излагаются теоретические основы метода электрофореза на бумаге и способы ...