Приведённое выше селективное α-замещение проводят в присутствии различных N-зашитных/активирующих групп [100] [101] [102] [103] [104] [105] [106] [107] [121].
3-Литийиндолы могут быть получены заменой атома галогена [122]; N-трет-бутоксиметилсилильное производное региостабильно даже при 0 °C [123], тогда как 3-литий- 1-фенилсульфониливдол изомеризуется в 2-изомер даже при температуре выше —100 °C, хотя при этой температуре не происходит раскрытия гетероцикла и образования алкина в результате отщепления азота в виде аниона (для сравнения см. разд. 18.3.) [124] [125]. Соответствующие N-фенилсульфонил-3-магний — [126] и N-фенилсульфонил-3-цинкпроизводные [127] устойчивы даже при комнатной температуре: они могут быть получены из 3-иодиндола реакцией с этилмагнийбромидом и триметилцинкатом лития соответственно.
3-Литиирование с замещением атома водорода возможно при условии блокирования положения 2 такими орто-ориентирующими группами, как 2-(2-пиридил) [126] или 2-карбоксил [128]. Прямое 3-литиирование, даже в отсутствие заместителей в положении 2, удаётся осуществить при наличии N-ди-(трет-бутил)формильного заместителя [129]. Приведём и другие примеры процессов прямого металлирования в химии индолов: 2-литиирование 1-замещенных индол-3-карбоновых кислот и амидов [130] и 3-гидроксиметил-1-фенилсульфонилиндола [131]; 4-литиирование 5-(диметилкарбамоилокси)-1-(трет-бутилдиметилсилил)индола и 6-литиирование 4-замещённых 5 — (диметил карбамоилокси)-1-(трет-бутилдиметилсилил)индолов [132].
Удивительно, что обмен металл — галоген возможен для любого броминдола, имеющего атом брома в бензольном кольце и незащищённый атом азота; индол предварительно превращают в калиевую соль [133].