Региоселективность электрофильной атаки пиррольного цикла может быть изменена введением в положение 1 объёмного заместителя, например 1-(трет-бутилдиметилилсилил)пиррол и 1-(три-изо-пропилсилил)пиррол атакуются электрофильными реагентами исключительно по β-положению [22]. Сильные электрофильные реагенты, такие, как триметилсилилтрифлат, также атакуют пиррол исключительно по β-положению [23].
Индолы лишь немногим менее активны в реакциях электрофильного замещения по сравнению с пирролами, и такие реакции проходят по β-положению гетероциклического фрагмента. Скорости ацетилирования в условиях реакции Вильсмейера (N,N-диметилацетамид — фосген) индола и пиррола соотносятся как 1:3 [24]. В противоположность пирролу, для индола наблюдается очень высокая региоселективность при реакциях электрофильного замещения; так, при ацетилировании в условиях реакции Вильсмейера соотношение скоростей атаки по β- и α-положениям равно 2600:1. Индол вступает в реакции с электрофилами по β-положению в 5×1013 раз быстрее, чем бензол [25]. Иллюстрацией различия в реакционной способности индола и фурана может служить приведённая ниже [26] реакция формилирования.
Реакционная способность индола аналогична реакционной способности фенола: как и фенол, индол (и пиррол) вступает в реакции со слабыми электрофилами типа катиона фенилдиазония. В зависимости от pH среды индол способен вступать в такие реакции в виде соответствующего аниона, образующегося в результате N-депротонирования (разд. 2.5.) и присутствующего в небольшой равновесной концентрации. Очевидно, что реакция индолил-аниона с катионом фенилдиазония — ещё более быстрый процесс, который проходит в 108 раз быстрее, чем с нейтральной молекулой [27].
Реакция Манниха (электрофил CH2 = N+Me2) 5- и 6-гидроксииндолов идёт по положению, соседнему с гидроксильной группой, а не по β-положению индола [28]. Сравнение реакционной способности фурана и бензо[b]фурана, с одной стороны, и тиофена и бензо[b]тиофена, с другой, в реакциях электрофильного замещения показывает, что бициклические системы менее активны в таких превращениях, чем моноциклические, хотя степень различия существенно зависит от природы электрофила [29].
Для 1,2- и 1,3-азолов характерны свойства как пятичленных электроноизбыточных гетероциклических соединений, так и гетероциклических соединений, содержащих иминный атом азота. Присутствие иминного фрагмента в азолах понижает их активность в реакциях электрофильного замещения по атому углерода как в результате индуктивного, так и мезомерного влияния. Кроме того, присутствие основного атома азота способствует образованию солей азолов в кислых средах. Например, в зависимости от кислотности среды нитрование пиразола может проходить либо через предварительное образование пиразолиевого катиона [30], либо с участием свободного основания [31].
Изучение протонного обмена, катализируемого кислотой, обнаружило следующий порядок реакционной способности: пиразол > изоксазол > изотиазол. Среди пятичленных гетероциклических соединений с одним гетероатомом порядок активности в реакциях протонного обмена следующий: пиррол > фуран > тиофен, причём каждое из этих соединений более активно в таких превращениях, чем гетероциклические соединения, содержащие иминный атом азота. При этом азолы более активны в реакциях протонного обмена, чем бензол, парциальные факторы скоростей для реакций по положению 4 пиразола, изоксазола и изотиазола равны 6,3×109, 2,0×104 и 4,0×103 соответственно. Нитрование тиофена проходит в 3×105 раз быстрее, чем нитрование 4-метилтиазола [32]. Относительная активность тиофенового и тиазольного циклов в реакциях нитрования иллюстрируется приведённой ниже реакцией [33]:
2.2.3. Пятичленные гетероциклические соединения
Список литературы к главе 2